
THREE NOVEL ALKALOIDS FROM ERVATAMIA ORIENTALIS

J.R. Knox and J. Slobbe

Chemistry Department, University of Western Australia, Nedlands, W.A. 6009 (Received in UK 29 April 1971; accepted in UK for publication 13 May 1971)

Ervatamine, 20-epiervatamine and 19,20-dehydroervatamine are related indole alkaloids of a novel type obtained from extracts of <u>Ervatamia orientalis</u> (Apocynaceae). In this communication we report evidence for their structures which are unusual in that they lack indolylethylamine moieties.

The spectral characteristics of 19,20-dehydroervatamine (<u>1</u>), $C_{21}H_{24}N_2O_3$, m.p. 198-200° (dec.), $[\alpha]_D + 53°$ indicate the following groupings: a 2-acylindole grouping (ν_{max} 1650cm⁻¹; λ_{max} 242, 315 mµ, log ε 4.11, 4.28), a methyl ester (ν_{max} 1740cm⁻¹, three proton n.m.r. singlet at 6.44T), an N-methyl (three proton n.m.r. singlet at 7.73T) and a \gtrsim C=CHCH₃ grouping (three proton doublet at 8.42T, J = 6.5Hz). LiAlH₄ reduction of <u>1</u> formed a mixture of epimeric diols which was converted to a single crystalline ketol (<u>2</u>), $C_{20}H_{24}N_2O_2$ (M⁺, 324.1840), m.p. 120-140° $[\alpha]_D$ + 67° by careful oxidation with CrO₃/pyridine¹. The n.m.r. spectrum of the derived O-acetate showed the signals for the protons geminal to the acetoxyl group as a clean AB quartet (τ_A 5.87, τ_B 6.22, J_{AB} = 11 Hz) demonstrating that the methoxycarbonyl group of <u>1</u> is located on a fully substituted carbon.

The methiodide of the ketol (2) underwent a vinylogous 1,4-Hofmann elimination under mild conditions to form the conjugated diene (3), $C_{21}H_{26}N_2O_2$, m.p. 138-138.5°, $[\alpha]_D + 4^\circ$ which has a broadened short wavelength u.v. absorption (230-240mµ) due to the diene chromophore. In addition the 2-substituted butadiene grouping was revealed by inspection of the n.m.r. spectrum: the five vinylic protons gave rise to a doublet of doublets (3.70 τ , J = 17.5, 10 Hz; H_c), two broadened singlets (4.85, 5.05 τ ; H_a, H_b) and obscured signals from two other protons (H_d, H_e, signals partly underneath those of H_a, H_b). The presence of such a grouping in 3 shows that 1 has the partial structure $C - C - CH_2 - N - C$.

A neutral product $C_{18}H_{17}NO$, (M⁺, 263.1303) m.p. 141-4° $[\alpha]_D$ + 255° was obtained from brief treatment of the methiodide of <u>3</u> with KOtBu in <u>t</u>-butanol. The n.m.r. spectrum of the product showed that the 2-substituted butadiene grouping was retained but additional signals were observed due to a new vinylic proton (br.s, 3.11 τ) and a deshielded vinylic methyl (d, 7.93 τ , J 1 Hz). In addition the u.v. spectrum (λ_{max} 233, 252, 333, 390(sh)m μ ; log ε 4.51, 4.52, 4.11 and 3.83) revealed an extended chromophore. These observations are consistent with structure <u>4</u> which is considered to arise from the methiodide by loss of formaldehyde and trimethylamine² followed by isomerization of the double bond thus formed into conjugation with the indole moiety.

Partial structure 5 is indicated for 19,20-dehydroervatamine by the above evidence and though there are several possible structures combining 5 with the C_2H_3 residue only one has a methylene group adjacent to the ketone functionality. That this is the case for 19,20dehydroervatamine was shown NaBH₄ reduction of <u>1</u> to give a mixture of epimeric alcohols which underwent smooth dehydration with glacial acetic acid.³ The product was the α -vinyl indole (<u>6</u>) and n.m.r. signals for two additional vinyl protons at 3.56T (d of d, J = 11, 3Hz) and 4.48T (partially obscured)showed it to be a disubstituted alkene. Thus 19,20-dehydroervatamine has a methylene grouping adjacent to the ketone and is represented by structure <u>1</u>.

Ervatamine $(\underline{7})$, $C_{21}H_{26}N_2O_3$ (\underline{M}^+ , 354.1949) m.p. 92-8° (solvated by MeOH), $[\alpha]_D^{-3.7°}$ and 20-epiervatamine ($\underline{8}$) $C_{21}H_{26}N_2O_3$ (\underline{M}^+ , 354.1950) m.p. 185-7° (dec.), $[\alpha]_D^{-22°}$ were seen to lack an ethylidene functionality (n.m.r.) but in other respects they showed properties very similar to those of <u>1</u>. Prolonged catalytic hydrogenation of <u>1</u> followed by reoxidation of the reduced carbonyl functionality gave ervatamine together with a small amount of 20-epiervatamine thus demonstrating that they are the epimeric dihydro derivatives <u>7</u> and <u>8</u> as was suspected from the spectral and analytical observations.

<u>ACKNOWLEDGEMENTS</u> One of us (J.S.) is indebted to the CSIRO for the award of a postgraduate studentship. We are grateful for precise mass measurements made by the Mass Spectrometry Unit, University of Sydney.

References

1. T. Shioiri and S. Yamada, Tetrahedron, 24, 4159 (1968).

- C.A. Grob and P.W. Schiess, <u>Angew. Chem. Int. Ed. 6</u>, 1 (1967); A.M. Roe and M. Gates, <u>Tetrahedron</u>, <u>11</u>, 148 (1960).
- 3. M. Gorman and J. Sweeny, Tetrahedron Letters, 3105 (1964).